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Introduction  

In this paper we study the Fermat’s last theorem, the most famous of all Diophantine problems. In 1637, Format stated the 

following theorem without giving any proof of it. 

If n is an integer greater than 2 there do not exist integers x, y, z all different from zero such that 

 xn + yn = zn (1) 

This theorem was stated by Fermat on the margin of his copy of Diophantus. He added that he had discovered a truely 

remarkable proof of the theorem, but that the margin of the book was too narrow to contain it. 

No general proof of this theorem has yet been found. For various special values of n proofs have been given. 

In the study of equation (1) it is convenient to make the following observations. 

If there exists a solution of (1) there exists also a solution in which x, y, z are relatively prime pairwise. This can be seen as 

follows. 

If any two of the numbers x, y, z have the greatest common factor, d > 1 then from (1) it follows that the third number of the 

set has also the same factor. Hence the equation may be divided through by dn. 

In the resulting equation the numbers x, y, z are relatively prime pairwise. Hence in dealing with the impossibility of (1) it is 

sufficient to treat only the case in which x, y, z are relatively prime pairwise. 

Again, since n is greater than 2,it must contain the factor 4 or an odd prime factor p. If n contains the factor 4, we may write    

n = 4m, whence we have 

 (xm)4 + (ym)4 = (zm)4 (2) 

But we know thatx4 + y4 = z4
 is impossible, hence it follows that the equation (2) is impossible. Hence if equation (1) is true 

then n does not contain the factor 4. 

Now, if n contains the odd prime factor p, we may write n = pm for which we have 

 (xm)p + (ym)p = (zm)p 

Therefore in order to prove the impossibility of the equation (1) it is sufficient to prove the impossibility of the equation 

 xp + yp = zp (3) 

where p is an odd prime. 

Many great Mathematicians have worked on this problem, but they only found particular solutions of this problem. A brief 

account of the results known so far are stated here. 

(a) Legendre [1] has shown that the equation xp + yp = zp can not be satisfied by integers x, y, z each of which is prime to p if 

p < 192. 

(b) Mailet [2] has shown that same is true if p < 223. 

(c) L. E. Dickson [3] has proved that the equation is without a solution in integers prime to p if p < 6857. 

(d) Kummer [4] in 1850 made the greatest contribution to the subject. He introduced the Algebric number arising from the 

pth root of unity and this was beginning of algebric number theory which was later generalized by Dedekind and 

Kronecker. 

(e) The work of H. Vandiver [5] and D. H. Lehmer [6] has settled the insolvebility for p < 2000. 

(f) J. L. Selfridge, C. A. Nicol and H. S. Vandiver [7] have settled in 1955 the impossibility for p < 4002. 

(g) In 1967 J. L. Selfridge [8] again attempted this problem. The calculation has been carried out on the high speed computer 

SWAC. Now it is known to hold for p < 25000. 

The Academy of Sciences of Gottingen announces a sum of 1,00,000 German marks which is to be awarded as a prize to the 

person who first presents a rigirous proof of this theorem. No complete proof of this theorem submitted so far has been declared 

valid for the prize. 

In this book ‘A Chapter in the Theory of Number’ L. J. Mordell who devoted his life in solving Diophantine equations 

declared that “There are easier methods of earning money than by proving Fermat’s last theorem.” 

1. Devid E. Stone [9] has proved a theorem which pertains to Fermat’s last theorem. The theorem is 

Theorem 1. If p and 2p + 1 are odd primes and xp + yp + zp = 0, where x, y, z are non-zero pairwise prime integers then precisely 

one of the integers x, y, z is divisible by p. 

In the present section we shall prove theorems which some pertain to Fermat’s last theorem. 

Theorem 2. If x, y, z are positive integers and 

 xn + yn = zn; n > 2 (4) 

then x, y, z can not be in arithmatic progression. 

Proof. Let x, y, z be in arithmatic progression, then we may take them without loss of generality as X – K, X, X + K, where K is 

positive integer and (X, K) = 1 
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Then we have  

 (X – K)n + Xn = (X + K)n (5) 

Now expanding (5) by the Binomial theorem we get 

    1 3 2

1 32 ... ( 1) .n n n n n n n nX K X X K K K       
 

 (6) 

   0 (mod 2), whether n is odd or even. 

Hence xn = 2Km for some positive integers m. 

For integral solution X should be divided by K, but (X, K) = 1 therefore K = 1. 

The equation (6) becomes 

     1 3

1 32 ... 1 ( 1) .n n n n n nX X X       
 

 (7) 

If n were odd, then 2|Xn, hence X is even and so 2n-1 will divide the odd number, 

      1 3   2

1 3 2... 1n n n n n

nX X X 

    ,  

which is impossible. 

Now let n be even and greater than 4, then (7) will be written as 

      1 2 4   

1 3 22 ...n n n n n n

nX X X  


    
 

, (8) 

Since 
2

X
 is even, we have 

       
1 2 2

2   2   

1 2 12 2 ... 2
2 2 2

n n

n n n n

n n

X X X
 



 

      
         

       

, (9) 

Hence 
2

X
 divides    

1

n

n  i.e. n. But from (9) 

  
1 2

2 2

12 2
2 2

n n

n n nX X
 

    
   

   
 

i.e.  
2

X
n . But 

2

X
 divides n, so that .

2

X
n   

Thus 
2 2

X X
n   

This is a contradiction. Hence the theorem follows. 

Theorem 3. If xn + yn = zn where x, y, z are non-zero positive integers and n greater than 2 then x, y, z can not be in geometric 

progression. 

Proof. Let us suppose that x, y, z are non-zero positive integers and they are in geometric progression. 

Let  x = a, y = ar, z = ar2 

where a and r are positive integers other than zero. 

Therefore an + (ar)n = (ar2)n 

or 1 + rn = r2n, for an > 0 

Hence  r2n - rn - 1 = 0  

The discriminate of the quadratic equation in rn is 5 which is not a perfect square. Hence rn and so r can not be a rational 

number. This proves the theorem. 

Theorem 4. If xn + yn = zn where x, y,z are non-zero positive rationals and n greater than 2 then x, y, z can not be in harmonic 

progression. 

Proof. Let x, y, z be in harmonic progression. Then we may take them as 

 
1 1 1

, , ,
X K X X K 

 

where X, K are positive integers and X greater than K. Now we are to show that 

 
1 1 1

n n n

X K X X K

     
      

      
 (10) 

is impossible. 

Now (10) may be written as 

 
2

2

2
1 1 1 0

nn n

n K K K
X

X X X

     
          
      

 

As X > 0 and n > 2 we have 

 
2

2
1 1 1 0

nn n
K K K

X X X

    
         

     
 (11) 

Since 1
K

X
 , hence using the Binomial theorem in (11), we get  
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           

     

2 2

1 2 1 2

2
2 2 2

1 22 2 2

1 ... ... 1 ... ( 1) ...

1 ... ( 1) ... 0

r r

n n n n n r n

r r

r

n n r n

r

K K K K K K

X X X X X X

K K K

X X X

            
                       

             

      
             
       

 

Considering rth term of three expansions we have 

  
2

2
( 1) ( 1)

rr r

n r r

r

K K K

X X X

     
         
      

 

when r is odd we get 

   1

r r r
n

r r

K K K

X X X

     
       

      

 

Since 1,
K

X
  

hence 1 0
r

r

K

X
   for all values of r  n. 

When r is even we get 

    
2

2
0

rr r r
n n

r rr

K K K K

X X X X

       
          

        

. 

Hence R.H.S. of (11) is always positive for all values of r  n, n > 2, which is a contradiction. Hence the theorem follows. 

Theorem 5. If x, y, z are positive integers such that z  min(x2, y2) then for any integer n  3 the equation xn + yn = zn is 

impossible. 

Proof. Here we have 

 xn + yn = zn  

or xn = zn - yn = (z – y) (zn-1 + zn-2y + … + yn-1) 

We know that the arithmatic mean of n positive numbers is greater than their geometric mean. 

Applying this result we get 

 

11 2 1

2

1 1

1 2 1 2 2

...
( )

... ( ) ( ) ,     3

nn n n

n n

n n n

z z y y
zy

n

z z y y n zy zy n

  

 

  

  


     

 

Again (z - y)  1, we have 
1

2

1 1

2 2

1

3

                  ( )

or               ( )

or               ( )

n

n

n

x zy

x zy

x zy











 

On account of symmetry in x, y we have 

 

1

3( )y zx
 

Now x9 > z3y3 > z3zx = z4x 
or z4 < x8 

or z < x2,  

similarly  z < y2 

Hence z < min(x2, y2) which contradicts the assumption. Hence the theorem follows. 

Theorem 6. If xn + yn = zn, where x, y, z are non-zero pairwise prime integers and for any integer n > 2, 3n + 1 is a prime, then one 

of the integers x, y, z is divisible by 3n + 1. 

Proof. Suppose that none of the integers x, y, z is divisible by 3n + 1, then xyz is not divisible by 3n +1 and so (xyz, 3n + 1) = 1, 

then (3n + 1, x) = 1, (3n + 1, y) = 1, (3n + 1, z) = 1, since x, y, z are relatively prime pairwise. 

By Fermat’s theorem 

 x3n  y3n  z3n  1 (mod 3n + 1)  (12) 

Again since xn + yn = zn  

We have x3n + y3n + 3 xnynzn = z3n (13) 

From (12) and (13) we have 

 3xnynzn = -1 (mod 3n + 1) 

Hence we have 27x3n
 y3nz3n = -1 (mod 3n + 1) 

Now using (12) we get 

 27  -1 (mod 3n + 1)  

i.e.  28 = 0 (mod 3n+1) 

which is impossible since only prime divisor of 28 is 7 corresponding to n = 2, but n > 2 by assumption hence the theorem 

follows. 

Theorem 7. If xp + yp = zp has positive integral solutions for any prime p > 2, then z > min (x, y) > p. 

Proof. We may suppose that x, y, z are relatively prime pairwise. 
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Since xp + yp = zp, therefore it is obvious that  

 z > min (x, y). 

Let us suppose p > rain (x, y). On account of symmetry we may suppose that x > y and p > y. The following two cases arise. 

(i)  p > x > y 

(ii) x > p > y 

In case (i) since yp = zp - xp, we have 

 yp  (x + 1)p – xp > pxp-1 

Hence  

1p

x
y p p

y



 
  

 
 

So that y > P and this contradicts (i). Similarly in case (ii) we have a contradiction. This proves the theorem. 

Theorem 8. If x, y, z are positive integers and xn + yn = zn, then each of x, y, z is greater than n, where n is a positive integer. 

Proof. We may suppose that z > x > 0. We now only show that x > n. 

Here we have 

 xn = zn – yn = (x – y)(zn-1 + zn-2y + … + yn-1) 

Since z > y, therefore z – y = k > 0 

 xn > knyn-1 

 

1

  as .

n
y

x kn kn y x
x



 
   

 
 

Thus x > n. The theorem follows. 

Theorem 9. If xn + yn = zn has a positive integral solutions for any odd number n > 2 andx, y, z are positive integers then Mobius 

function (x + y) = 0. 

Proof. Since n is odd, therefore (x + y)(xn + yn), i.e. (x + y)zn. If the prime factor of (x + y) be q then qzn.  

Therefore  qz. 

Thus every factor of (x + y) divides z. Now let us suppose 

 (x + y)  0, then (x + y)z. 

Therefore (x + y) < z or (x + y)n < zn 

or       1 1 2 1

1 2 1... 0.n n n n n n

nx y x y xy  

     

This is impossible as x, y are positive integers and n > 2. This is a contradiction, hence (x + y) = 0. 

Theorem 10. If x, y, z are positive integers such that 

 xn + yn = zn where n > 4 then 

 
12 min( , ) ( , )(1 (2 log 2 ) ).x y x y n n    

To prove this theorem we need the following lemma. 

Lemma 1. For any integer n > 4 

 2

1

122 1 ( log )n n  
 (14) 

Proof. If n > 4 then 

1
.

log 2
n

e


 

From which we get log n > (log 2)-1 which implies 

 (n log n)-1 < n-1 log 2. 

But  log {1 + (n log n)-1} < (n log n)-1 

or  log {1 + (n log n)-1} < (n-1log 2 = log 

1

2n . 

Therefore 

1

2n  > 1 + (n log n)-1. 

Proof of the theorem. It is well known that 

 2
2

n

n n x y
x y

 
   

 
 

Since xn + yn = zn, it follows that  

 Zn > 21-n (x + y)n  

 
1

1

2 ( ).nz x y


   

We have already proved in Theorem 5 that  

 2 2min( , )z x y  

Therefore 
1

1
2 2 ( ) ( )nx x y m x y



     

where 
1

1

2nm


  and y2 > m(x + y); this implies 

 

2 4
.

2

m m my
x

 
  

Hence we find x > my, so that 

1

2
2

2 .
2

n
x
  
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Therefore 
12

1 (2 log 2 ) .
2

x
n n    Similarly 

 
12

1 (2 log 2 ) .
2

x
n n     

Hence we get 
12 min( , ) max( , )[1 (2 log 2 ) .x y x y n n    

This proves the theorem. 

Theorem 11. If xn + yn = zn has positive integral solutions for infinitely many primes p, then there exist sequences {xn}, {yn}, {zn} 

of positive integers and a sequence {pn} of prime such that  

(i)  n n np p p

n n nx y z   and 

(ii)  max( , )n n nz x y  or more precisely 

 1max( , )(1 0( log ) ).n n nz x y n n    

Proof. Let us suppose that xp + yp = zp has positive integral solutions for infinitely many primes p, then there is a sequence of 

primes {pn} such that for each pn there exists integers xn, yn, zn such that 

  n np p n

n n

n

z
x y

x
   (15) 

Let xn, yn, zn be the least of the sets of positive integers {xn}, {yn}, {zn} satisfying (15) for a given pn. Now suppose that xn > yn 

then from (i) we have  

 

1

2 2n n np p pn

n n

n

z
x x or

x
   

Now it is easy to see that 

 

1
1

2 1m

m
  , for any integer m > 1. 

Hence we get 
1

1 1 .n

n n

x

z p
    

If Qn is the nth prime, then plainly pn > Qn. 

But it is known that Qn = 0 (n log n). 

Hence it follows that 

 
11 0( log )n

n

z
n n

x

   

Similarly we can prove 

 
11 0( log ) ,    if .n

n n

n

z
n n x y

y

    

Hence we get 1max( , )[1 0( log ) ].n n nz x y n n    

Theorem 12. If p and 4p + 1 are primes with P > 3 and xp + yp + zp = 0, where x, y, z are non-zero pairwise prime integers than 

precisely of the integers x, y, z is divisible by 4p + 1. 

Proof. To prove the theorem let us assume that none of the x, y, z is divisible by 4p + 1 so that (xyz, 4p + 1) = 1. Writing the 

equation as xp + yp = - zp and squaring get, 

 x2p + y2p + 2xpyp = z2p (16) 

Since 4p + 1 is a prime and by assumption x, y, z are each prime to 4p + 1, we have by Fermat’s theorem 

 x4p  1(mod 4p + 1)  

or  x4p-1  0 (mod 4p + 1)  

or  (x2p + 1) (x2p – 1)  0 (mod 4p + 1), 

Only one of the factor of the left is divisible by 4p + 1, for if both of them were divisible by 4p + 1, so is there difference i.e. 2 

which is impossible.  

Now  

 

2

2

1(mod 4 1)  if 

1(mod 4 1)  if 

p

p

x p x

x p x

   

    
 (17) 

Simillarly when x is placed by y and z. Hence by using these relations in (16) we get 

  1  1 2xpyp =  1 (mod 4p + 1) 

or 2xpyp =  1, - 1 + 3, or -3 (mod 4p + 1) 

Squaring the last congruence and (17) for x, y, we get 

  4 = 1 or 9 (mod 4p + 1) 

Since p is prime > 3, the last congruent is impossible. This contradicts the assumption that (xyz, 4p + 1) = 1 and hence one of 

the integers x, y, z must be divisible by 4p + 1. 

Theorem 13. If p and 2p + 1 are odd primes and x, y, z are non-zero pairwise prime integers such that xp + yp + zp = 0, then exactly 

one of the integers x, y, z is divisible by p2. 

In order to prove the theorem we need the following lemma. 

Lemma 2. If a and b are integers such that a + b = 0 (mod p) and 

 
1 1

1

( , ) ( 1)
p

r P r r

r

F a b a b  



   
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Then F(a, b) = pap-1 (mod p2) 

Proof. We have a + b = 0 (mod p), therefore, b = kp – a for some integers k, so that 

 

1
1 1 1 1 1  

1

1 1 1

( , ) ( 1) ( ) ( 1) ( ) ( )
p p p

r P r r p r P r r n

r

r r n r

F a b a kp a pa a kp


      



   

 
      

 
    

Now 
1

1 1  2

1

1 1

( 1) ( ) ( ) 0  (mod )
p p

r P r r n

r

r n r

a kp p


  



  

 
  

 
   

Since when r = 2 

        1 2 1

1 1 2 1 2

1

( ) ... 0  (mod )
p

n p p

r

p



       

Hence F(a, b)  pap-1 (mod p2) 

The lemma is proved. 

Proof of the theorem. By Stone’s theorem we may suppose that p divides z. Then we can write 

 z = psc (18) 

where s is a positive integer and c an integer such that (p, c) = 1. Now since xp + yp = zp, it follows that xp + yp
 = - pspcp which 

implies 

 (x + y) F(x, y) = - pspcp  (19) 

But   (x, p) = (y, p) = 1,  

Therefore xp + yp = (x + y) ( mod p), (by Fermat’s theorem) 

So that we get - zp  (x + y) (mod p) 

Since p divides z, it follows x + y = 0 (mod p). 

Hence by the above lemma 

 F(x, y)  pxp-1 (mod p2) 

which shows that 

 F(x, y)  0 (mod p), but 

 F(x, y)  0 (mod p2). 

Hence (19) implies x + y = psp-1u  

and  F(x, y) = pv  

where uv = -cp.  (20) 

Now we shall show that (u, v) = 1, for if q is a prime divisor of u and v, y = tq - x for some integer t and hence 

 F(x, y)  pxp-1 (mod q), 

which shows that pxp-1 0 (mod q) and this is false. 

Therefore from (20) it follows that 
0

pu z  and 
1

pv z   

where  z0z1 = c. 

Again [y + z, F(y, z)] = 1, for if q1 is prime divisor of y + z and F(y, z) we have y = q1t1 - z for some integer t1, so that 

 0  F(y, z) = pzp-1 (mod q1) and,  

hence pzp-1 = 0 (mod q1).  

Therefore it follows that q1 = p or q1 divides z. 

If q1 = p, then p divides y + z which together with (18) shows that p divides y and thus we get (y, z)  1, which contradicts the 

hypothesis of the theorem. 

If q1 divides z, it follows that q1 divides y and again (y, z)  1 and this is false. 

Likewise if fellows that (z + x, F(z, x)) = 1. 

Hence we have the following relations 

 1

0 1 1  (21 )  ( , )sp p px y p z F x y pz     (21) 

 
0 1 1

0 1 0 1 0 1

  (22 )  ( , )

,  ,  

p py z x F y z x

z x x x y y y c z z

   

   
 (22) 

0 1 0 1 0 1and , , , , ,x x y y z z  are pairwise prime integers. 

Now (22) and (23) imply 

 x + y + 2z = (x0 + y0) F(x0, y0).  (24) 

But (p, x0) = (p, y0) = 1, so that 

 
0 0 0 0( )  (mod )p px y x y p    (25) 

Since p divides z and also x + y, from (22) and (23) we get  

 
0 0 0 (mod ),p px y p    

hence (25) implies 

 0 0( ) 0  (mod )x y p   

Which follows 0 0( , ) 0  (mod )F x y p  by lemma. 

Therefore (24) implies 

x + y + 2z  0 (mod p2). 

Using (21) it fallows that 

z  0 (mod p2) 

Hence the theorem follows. 
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